Compact all-optical differential-equation solver based on silicon microring resonator

نویسندگان

  • Liyang LU
  • Jiayang WU
  • Tao WANG
  • Yikai SU
چکیده

We propose and numerically demonstrate an ultrafast real-time ordinary differential equation (ODE) computing unit in optical field based on a silicon microring resonator, operating in the critical coupling region as an optical temporal differentiator. As basic building blocks of a signal processing system, a subtractor and a splitter are included in the proposed structure. This scheme is featured with high speed, compact size and integration on a siliconon-insulator (SOI) wafer. The size of this computing unit is only 35 μm 45 μm. In this paper, the performance of the proposed structure is theoretically studied and analyzed by numerical simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator

Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical pro...

متن کامل

Compact optical temporal differentiator based on silicon microring resonator.

We propose and experimentally demonstrate a temporal differentiator in optical field based on a silicon microring resonator with a radius of 40 microm. The microring resonator operates near the critical coupling region, and can take the first order derivative of the optical field. It features compact size thus is suitable for integration with silicon-on-insulator (SOI) based optical and electro...

متن کامل

Miniature Microring Resonator Sensor Based on a Hybrid Plasmonic Waveguide

We propose a compact 1-μm-radius microring resonator sensor based on a hybrid plasmonic waveguide on a silicon-on-insulator substrate. The hybrid waveguide is composed of a metal-gap-silicon structure, where the optical energy is greatly enhanced in the narrow gap. We use the finite element method to numerically analyze the device optical characteristics as a biochemical sensor. As the optical ...

متن کامل

All-optical temporal differentiation of ultra-high-speed picosecond pulses based on compact silicon microring resonator

Introduction: Recent years have witnessed intensive interest in and the rapid development of implementations of basic operations with optics thanks to the high potential to increase signal processing speed that is several orders of magnitude higher than that of digital electronics [1]. CMOS-compatible silicon based all-optical signal processing devices could be important basic building blocks, ...

متن کامل

Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator.

We design and demonstrate a compact, narrow-linewidth integrated laser based on low-loss silicon nitride waveguides coupled to a III-V gain chip. By using a highly confined optical mode, we simultaneously achieve compact bends and ultra-low loss. We leverage the narrowband backreflection of a high-Q microring resonator to act as a cavity output mirror, a single-mode filter, and a propagation de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012